Glucometer

How Meditation May Help Regulate Blood Glucose

The number of Americans with diabetes mellitus is now approaching an astonishing 10 percent of the population. In 2011, the Centers for Disease Control and Prevention went so far as to label type 2 diabetes an “epidemic” and project that up to one in three American adults will have diabetes by 2050 unless we curb unhealthy lifestyle trends. Even the more heritable type 1 diabetes is increasing 3 percent a year in children worldwide.

There are a number of theories as to why what used to be a relatively rare disease has practically become pandemic. Some blame pollution, mercury and a greater number of aging Americans than ever before. But what we know for sure is that obesity is the greatest risk factor. Currently, one in three American children is obese.

Diabetes is a metabolic disease, most accurately characterized as a disease process that develops in stages. People with diabetes have chronic hyperglycemia (high blood glucose) as a result of either not producing enough insulin or being unable to use insulin properly, or both. Type 1 diabetes (5 to 10 percent of U.S. cases) usually seems to develop quickly, but the disease process — for example, persistent beta cell destruction — may have begun years earlier. Type 2 diabetes (90 to 95 percent of U.S. cases) has a more gradual onset and as many as one-third of those who have it may have symptoms for years and not realize it.

Type 1 diabetes is an autoimmune disease, in which a person’s immune system turns against substances naturally produced in the body — in this case, insulin. The immune system mistakenly attacks and destroys insulin-producing beta cells in the pancreas (a small organ near the stomach), which means that the pancreas can produce little or no insulin.

Insulin is a hormone produced by the islets of Langerhans in the pancreas that “unlocks” cells so that glucose or blood sugar can enter and regulates the amount of glucose in cells. Insulin allows glucose to move from the bloodstream into the liver, muscle, and fat cells, where it’s used to fuel the body. Without insulin, glucose levels spiral out of control, building up in the bloodstream instead of being deployed to the cells. The body cannot efficiently convert the glucose, which is the body’s main source of fuel, to energy. Within 5 to 10 years after diagnosis, the insulin-producing beta cells of the pancreas are completely destroyed, which means that no more insulin is produced.

During the initial stages of the more common type 2 diabetes, the pancreas may be producing enough insulin, but a condition known as insulin resistance develops, which renders the body unable to use the insulin efficiently, and blood sugars gradually rise. When the pancreas has been overworked for decades, it eventually begins to secrete less and less insulin as a secondary consequence, resulting in excess blood glucose. So, it’s no surprise that around 80 percent of those who have type 2 diabetes are obese or at least overweight.

When the pancreas is functioning normally, it produces insulin continuously, raising its output in response to the normal increase in blood sugar that occurs after meals, and in response to exercise, stress, infections, and other conditions. But the endocrine (hormonal) system — including the insulin-producing pancreas — is continuously making complex adjustments to keep blood sugar levels within set limits.

How does meditation help control diabetes?

At each stage of the diabetes disease process, meditation may influence mechanisms that regulate blood glucose levels and influence insulin production. Here are some highlights of how meditation helps combat diabetes…

  • Relieves psychological stress and emotional reactivity, which enables emotional self-regulation and its corresponding physiological reactions, including down-regulating the hypothalamic–pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) and influencing neurohormone mechanisms that reduce levels of specific stress hormones that trigger insulin resistance and restore insulin homeostasis.
  • Boosts immune system function, including reducing the inflammatory response common in people with type 2 diabetes that helps drive the disease process.
  • Reduces cell-damaging oxidative stress, which contributes to insulin resistance and high blood glucose levels.
  • Helps relieve common diabetes side effects (e.g., stress, depression, sleep disturbance, poor circulation and immune dysfunction).

Stress, Diabetes and Meditation

Psychological distress has been linked with impaired glycemic control in diabetics and increased risk of developing diabetes. (Surwit et al, 2002; Rosmond, 2005; Chrousos, Gold, 1998). Our physiological responses to stress over the long term — including increased glucose production, glucose mobilization and insulin resistance — influences that risk (Chrousos, Gold, 1998; Rosmond, 2005; Surwit et al, 2002).

Hormonal Regulation

When we’re stressed or anxious, the body’s natural stress response triggers a cascade of stress hormones such as cortisol, epinephrine (adrenaline) and norepinephrine (noradrenaline).

Prolonged, excessive levels of these three neurohormones increases insulin resistance which, of course, subsequently leads to higher blood glucose levels.

Meditation has been found to reduce the impact of this exaggerated stress response, first by decreasing norepinephrine, which ultimately decreases stimulation of the hypothalamus, which, in turn, decreases the stress-related production of cortisol (Vera et al, 2009; Newberg, A., Iverson, J., 2003; Jevning, et al., 1978; Sudsuang, et al., 1991; Walton, K., et al, 1995; Livesey J. H., et al, 2000).

In addition to triggering insulin resistance, excessive, prolonged levels of cortisol has numerous damaging effects; for example, triggering depression, accelerating aging, and compromising memory retrieval (Domes et al, 2004) and immune cell activity (Effros, 2008),

Meditation also inhibits epinephrine, which reflects, in part, the autonomic balance brought about by meditation (Walton, K.G., et al, 1995; Infante, J.R., 2001). Decreased adrenaline (epinephrine), coupled with the deep relaxation state experienced during meditation, allows the hypothalamus to bring about tranquility (Chugh, D., 1987).

Numerous studies have shown that meditation improves physical and mental health, in part, by down-regulating the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic

nervous system (SNS). Meditation’s ability to inhibit the sympathetic nervous system has many calming, anti-anxiety affects on the body. The HPA axis and SNS are triggered in response to a physical or psychological stressor, which leads to a cascade of physiological, behavioral, and psychological effects, and largely as a result of increased cortisol, epinephrine and norepinephrine. While this response mobilizes the classic “fight or flight” energy we need to combat the stressor, over time, this prolonged state of hypervigilance — repeated firing of the HPA axis and the SNS — leads to dysregulation and eventually to disease, including diabetes, obesity, autoimmune disorders, depression, anxiety, and cardiovascular disease.

In reducing levels of these neurohormones, meditation helps restore insulin homeostasis, regulate blood glucose and help normalize metabolic syndrome. Metabolic syndrome is characterized by the co-occurrence of hypertension, dyslipidemia (abnormal cholesterol), obesity, and insulin resistance, a cluster of conditions which increase the risk of diabetes, as well as heart disease, and stroke.

Melatonin and Sleep Disturbance

Lack of sleep has been associated with diabetes (Access Economics, 2004). The neurohormone melatonin, often referred to as the “sleep hormone” or “the hormone of darkness,” plays a key role in helping you get a good night’s sleep. Produced by the pineal gland in the brain, melatonin regulates our circadian rhythm (sleeping and waking) patterns; that is, it tells the body when it’s time to sleep.

Several studies have found that meditation increases blood plasma levels of melatonin (Vera et al, 2009; Harinath et al., 2004; Massion et al., 1995; Solberg et al., 2000a, 2004a, b; Tooley et al., 2000). Meditation is believed to increase melatonin levels by slowing liver metabolism or by increasing melatonin synthesis in the pineal gland (Massion et al., 1995).

Melatonin also acts as an antioxidant and immunomodulator, stimulating the antioxydative defense system and helping to regulate the immune system and (Massion et al., 1995), Melatonin’s antioxidant properties help fight the damage wreaked on us by free radicals, or oxidative stress. It has also been closely linked to serotonin activity with respect to mood stabilization, positive emotions, stress-prevention and aging.

Oxidative Stress

Oxidative stress is a destructive process in which free radicals or reactive oxygen molecules react with the components of cells (e.g., proteins or fats and nucleic acids such as DNA), ultimately damaging those cells. Oxidative stress can lead to chronic inflammation, which, in turn, plays a role in chronic diseases such as diabetes.

Increasing evidence in both experimental and clinical studies suggests that there is a close link between oxidative stress, hyperglycemia, and diabetes and its associated complications.

High blood glucose level is associated with overproduction of free radicals and a decline in antioxidant defense systems, which can contribute to developing insulin resistance (Piconi et al, 2005; Maritim et al, 2003). In fact, oxidative stress, through the production of reactive

oxygen species, is believed by many scientists to be the root cause underlying insulin resistance, beta cell dysfunction, impaired glucose tolerance and type 2 diabetes (Wright et al, 2006). It has also been implicated in the progression of long-term diabetes complications, including vascular dysfunction. Thus, therapies aimed at reducing oxidative stress would benefit type 2 diabetics and those at risk for developing diabetes.

One of the mechanisms through which meditation may help prevent or mitigate diabetes is by reducing the level of oxidative stress in our bodies.

Some studies have found that oxidative stress is significantly lower among those who practice meditation, especially long-term practitioners (Van Wijk et al, 2008; Sharma et al, 2008).

Diabetes and the Immune System

When the body’s physiological systems are not integrated with its holistic “inner intelligence,” a loss of homeostasis occurs, which impacts the mechanisms driving our metabolic systems, as well as the immune system. We know that a compromised immune system makes us more vulnerable to all diseases — including diabetes —and impairs the body’s ability to recover. Diabetics are prone to suffering both microvascular (small vessel) and macrovascular (large vessel) damage, which leads to poor circulation and slow healing of wounds, particularly of the feet.

The practice of Sahaja meditation may trigger a broad set of adaptive responses at the neurological, autonomic, neuroendocrine, and cardiovascular levels that restore homeostatic and self-repair mechanisms.

Meditation may, in effect, help “reset” the immune system, which can help prevent or slow its attack on insulin-producing beta-cells in the pancreas.

Inflammation is common among those with type 2 diabetes (Esposito et al, 2002). While inflammation is part of the body’s natural immune response, chronic inflammation helps drive the disease process of diabetes. Hyperglycemia (excess blood glucose) can trigger elevated levels of circulating inflammatory cytokines. (Cytokines regulate the intensity and duration of the body’s immune response.) Inflammatory markers (chemicals in the body that lead to inflammation), such as interleukin-6 (Il-6), IL-18, and C-reactive protein, have been found to be increased in those with type 2 diabetes (Esposito et al, 2002).

Emotional Regulation

There is growing evidence to suggest that psychological stress and negative mood states are bidirectionally associated with insulin resistance, glucose intolerance, obesity, hypertension, and dyslipidemia (Innes, 2007); that is, stress and negative mood can both contribute to causing and be caused by diabetes.

Meditation elevates mood, promotes positive emotions, emotional stability and resilience, enhances our sense of well-being and self-control, and strengthens our ability to inhibit negative cognitive and emotional thought processes that are linked to stress, depression, anxiety and other conditions.

Sahaja meditation teaches us to objectively acknowledge and release the intrusive negative thoughts and feelings that often accompany a diabetes diagnosis and helps prepare our minds and bodies to cope with stressful circumstances.

Scientific Evidence of Meditation’s Impact on Diabetes

Even when blood sugar, cholesterol and blood pressure is being managed, some diabetics still suffer heart attacks and strokes. One key underlying cause of coronary artery disease is endothelial dysfunction, which some physicians fail to address. The endothelium, a thin layer of flat cells lining interior surfaces of the circulatory system (such as blood and lymphatic vessels and the heart), is responsible for maintaining circulation. One of the endothelium’s primary jobs is releasing nitric oxide, which signals the arteries to relax and dilate, providing healthy blood flow throughout the body. Oxidative stress, common to diabetes and hypertension, deactivates nitric oxide, which contributes to endothelial dysfunction. Endothelial dysfunction, in turn, contributes to building blockages in arteries, which dramatically elevates the risk for heart attacks and strokes.

Previous Post
Medication

Improving patient adherence, Improving medical outcomes

Next Post
Blueberrie

Types of Antioxidants and 4 Best Antioxidants Foods to Boost Your Health